Compound features

Some features such as connectivity matrices have attributes siibra can use to combine them into one feature object, called CompoundFeature. Compound features contain all the features making them up as elements and allow easy access to each element.

Compound features naturally result from a feature query for certain feature types. For example, connectivity matrices usually provided for each subject, however, having them as separate features make it difficult to work with them. But as a compound feature, they inherit the joint attributes from their elements. But siibra will not compound different cohorts for example. Let us demonstrate:

import siibra
features = siibra.features.get(siibra.parcellations["julich 2.9"], "StreamlineLengths")
for f in features:
    print("Compounded feature type:", f.feature_type)
    print(f.name)
    # let us select the 1000 Brains cohort
    if f.cohort == "1000BRAINS":
        cf = f
        print(f"Selected: {cf.name}")
Compounded feature type: <class 'siibra.features.connectivity.streamline_lengths.StreamlineLengths'>
200 Streamline Lengths features cohort: HCP
Compounded feature type: <class 'siibra.features.connectivity.streamline_lengths.StreamlineLengths'>
349 Streamline Lengths features cohort: 1000BRAINS
Selected: 349 Streamline Lengths features cohort: 1000BRAINS

Each of these features consist of streamline lengths features corresponding to different subjects. An element can be selected via an integer index or by their index to a CompoundFeature using get_element:

print(cf[5].name)
print(cf.get_element('0031_2').name)
0031_2 - Streamline Lengths cohort: 1000BRAINS
0031_2 - Streamline Lengths cohort: 1000BRAINS

The indices of this compound feature corresponds to the the subject ids:

for i, f in enumerate(cf[:10]):  # we can iterate over elements of a CompoundFeature
    print(f"Element index: {cf.indices[i]}, Subject: {f.subject}")
Element index: 0056_1, Subject: 0056_1
Element index: 0152_1, Subject: 0152_1
Element index: 0162_1, Subject: 0162_1
Element index: 0027_1, Subject: 0027_1
Element index: 0142_1, Subject: 0142_1
Element index: 0031_2, Subject: 0031_2
Element index: 0080_1, Subject: 0080_1
Element index: 0089_2, Subject: 0089_2
Element index: 0200_2, Subject: 0200_2
Element index: 0117_1, Subject: 0117_1

We can also obtain the averaged data (depends on the underlying feature type) by as you would normally access the data of a feature

cf.data
Area 45 (IFG) left Area 44 (IFG) left Area Fo1 (OFC) left Area Fo2 (OFC) left Area Fo3 (OFC) left Area hOc5 (LOC) left Area hOc2 (V2, 18) left Area hOc1 (V1, 17, CalcS) left Area hOc4v (LingG) left Area hOc3v (LingG) left Area TE 1.0 (HESCHL) left Area TE 2.1 (STG) left Area TPJ (STG/SMG) left Area TE 1.2 (HESCHL) left Area TE 3 (STG) left Area TE 1.1 (HESCHL) left Area TE 2.2 (STG) left Area 33 (ACC) left Area s32 (sACC) left Area p32 (pACC) left Area Id2 (Insula) left Area Id3 (Insula) left CA2 (Hippocampus) left CA3 (Hippocampus) left Entorhinal Cortex left DG (Hippocampus) left HC-Parasubiculum (Hippocampus) left HC-Presubiculum (Hippocampus) left HC-Prosubiculum (Hippocampus) left CA1 (Hippocampus) left HC-Subiculum (Hippocampus) left HATA (Hippocampus) left Area OP4 (POperc) left Area OP1 (POperc) left Area OP2 (POperc) left Area OP3 (POperc) left Area FG2 (FusG) left Area FG1 (FusG) left Area PGp (IPL) left Area PFt (IPL) left ... Area hIP5 (IPS) right Area hIP7 (IPS) right Area hPO1 (POS) right Area 6mp (SMA, mesial SFG) right Area 6ma (preSMA, mesial SFG) right HC-Transsubiculum (Hippocampus) right Area Fo4 (OFC) right Area Fo5 (OFC) right Area Fo6 (OFC) right Area Fo7 (OFC) right Area 8d1 (SFG) right Area 8d2 (SFG) right Area 8v2 (MFG) right Area 8v1 (MFG) right Area Ig3 (Insula) right Area Id4 (Insula) right Area Id5 (Insula) right Area Ia1 (Insula) right Area Id6 (Insula) right Area Op5 (Frontal Operculum) right Area Op6 (Frontal Operculum) right Area Op7 (Frontal Operculum) right Area Ph1 (PhG) right Area Ph2 (PhG) right Area Ph3 (PhG) right Area CoS1 (CoS) right CGL (Metathalamus) right CGM (Metathalamus) right Area Id9 (Insula) right Area Ia3 (Insula) right Area Ia2 (Insula) right Area Id8 (Insula) right Area Id10 (Insula) right BST (Bed Nucleus) right Frontal-I (GapMap) right Frontal-II (GapMap) right Temporal-to-Parietal (GapMap) right Frontal-to-Occipital (GapMap) right Frontal-to-Temporal-I (GapMap) right Frontal-to-Temporal-II (GapMap) right
Area 45 (IFG) left 9.443545 18.452280 81.996862 76.311984 60.447846 87.293875 126.267999 110.810314 59.519272 117.959463 43.864128 104.475239 103.332152 95.618012 114.592295 101.629988 109.534864 61.266227 64.287529 70.211859 81.144263 97.573903 47.293355 13.473518 13.047154 61.164387 5.154558 59.170315 29.894852 86.506849 36.532338 28.033458 79.511281 87.745590 81.601769 70.757205 115.036780 85.898482 129.935802 89.277470 ... 9.250994 17.066265 26.540446 95.769876 109.712714 0.000000 54.575392 99.844241 108.891804 63.043891 113.496146 101.654701 101.916760 109.726970 0.000000 42.797586 105.145701 53.529893 115.311305 97.371290 80.455995 65.200497 6.385613 2.890188 1.221271 1.072693 2.055503 8.600813 86.633010 6.367201 4.207198 78.902619 59.208545 40.983498 108.951595 120.180233 177.613246 113.265633 80.185138 110.639884
Area 44 (IFG) left 18.452280 10.193551 95.279208 82.099026 87.691843 104.415531 135.063233 132.587356 68.737128 129.356451 49.101415 95.076827 88.070363 92.001393 103.790454 87.549913 92.033707 60.338550 56.799040 93.143421 63.485539 91.920502 46.932255 13.473399 10.404964 64.605532 4.315020 54.631695 32.228472 83.307590 41.361901 52.002353 20.890460 50.005247 54.764933 33.926110 118.041065 97.715565 119.568481 56.402003 ... 35.738913 36.212682 58.347864 100.843712 99.964064 0.694957 25.094095 68.510799 71.829330 29.538574 110.622211 101.437911 98.093604 106.941591 3.809837 80.229325 112.081991 57.080317 115.882325 115.157733 110.393254 59.648450 9.265393 15.973592 1.121680 2.380337 5.059613 25.375421 85.761333 2.251721 2.307121 58.291413 30.901453 28.651966 114.902715 111.998102 174.787987 94.451678 50.734833 123.819241
Area Fo1 (OFC) left 81.996862 95.279208 6.573588 13.315082 15.161988 52.781688 97.332853 88.399936 42.775696 100.165759 1.937948 25.136870 49.815274 16.561457 58.376877 38.272319 76.158440 46.195127 7.111685 28.222514 19.527405 70.593877 10.484189 1.683432 11.029073 26.881343 1.001270 29.520357 11.729373 43.154833 25.190636 6.725284 44.168908 86.845769 22.216414 20.309064 86.646161 63.486314 116.796087 79.631998 ... 1.306488 2.572960 6.475068 11.194722 47.709378 0.000000 53.932626 75.977601 80.136023 54.764544 86.582492 36.050784 31.282637 45.360134 0.000000 4.029522 19.534574 13.941052 57.603818 12.285935 7.462849 7.251268 1.973000 0.000000 0.679340 0.000000 0.000000 0.283786 33.780274 0.749393 3.500705 27.763440 46.599415 16.766337 113.842688 71.664900 73.118141 116.177581 59.525457 63.936724
Area Fo2 (OFC) left 76.311984 82.099026 13.315082 5.163227 9.402081 32.923000 87.850165 75.683076 28.594416 84.311910 1.867314 18.969785 28.632879 10.376333 34.255601 30.420648 64.056058 35.300322 14.560506 35.923490 12.759643 51.922049 7.986528 2.041240 12.054656 46.601901 3.808379 52.670236 24.943566 51.034131 35.568153 6.000724 33.712360 70.256818 14.248885 15.271519 60.069095 50.251655 89.946770 65.082334 ... 0.000000 1.904668 6.133801 5.465744 29.549854 0.509941 36.944027 57.811941 58.865254 37.346322 62.475760 24.656885 17.367664 28.286947 0.000000 2.650183 12.823830 10.099496 42.224776 6.726060 0.955899 2.347928 3.541349 0.661482 0.000000 0.000000 0.191268 0.000000 19.494678 0.450683 1.873560 21.208102 29.389941 15.930398 106.987976 49.719605 76.182733 115.687549 45.999289 53.404001
Area Fo3 (OFC) left 60.447846 87.691843 15.161988 9.402081 11.426877 93.047458 118.740601 115.030564 84.259005 119.985080 18.341870 69.132717 89.779897 43.986190 96.013878 85.026077 115.020310 47.697824 21.749120 41.021447 51.516410 52.492010 31.703761 9.866354 28.625944 49.808432 6.534963 41.725237 29.331926 63.918521 36.815298 16.018930 93.496016 107.399532 62.181334 68.333518 102.153033 92.842655 131.446139 117.585959 ... 3.013355 4.421043 13.249391 21.865384 81.433870 0.000000 58.091573 82.987299 88.766349 56.622828 115.553219 61.603716 55.835275 79.990256 0.396569 4.012744 33.709967 24.334302 87.623173 18.008178 8.335010 8.343077 2.548851 4.414194 1.692416 0.000000 0.000000 6.272387 44.423086 0.510184 5.291306 40.495518 43.096685 24.210959 114.177430 113.491221 128.354351 138.394680 68.374310 71.629294
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
Frontal-II (GapMap) right 120.180233 111.998102 71.664900 49.719605 113.491221 69.161450 93.629900 68.368218 22.172435 63.510193 15.463097 79.958527 99.768745 54.404075 113.158781 107.491513 138.670529 81.060058 39.713885 126.514173 93.242599 133.268543 14.178619 3.354716 2.333880 30.574149 0.548584 18.124478 9.415484 30.162562 19.128755 65.164121 120.113030 122.979954 87.816658 98.146899 107.025458 52.583518 147.890872 123.407881 ... 96.986014 105.715379 112.517488 58.459284 60.330565 8.719896 86.518106 82.679976 92.914889 96.089769 59.464410 47.141240 30.536686 23.709946 26.555708 50.344622 65.194007 78.556952 62.035106 32.187983 30.193863 58.752412 121.075978 121.819020 57.012847 81.494151 69.135988 56.357961 75.792077 69.267287 111.369583 84.573323 102.295146 85.458389 36.544035 15.811089 103.159107 54.434014 99.283334 84.955945
Temporal-to-Parietal (GapMap) right 177.613246 174.787987 73.118141 76.182733 128.354351 139.018347 149.585542 143.029777 134.220102 148.947169 57.787421 129.753650 121.288116 119.764933 139.967514 142.685745 146.528758 146.053738 82.643560 162.283491 69.449546 168.722200 76.607171 22.572160 6.742641 73.130102 2.520978 60.099548 25.782890 108.877859 39.460465 21.664566 136.060624 140.253353 81.107405 69.358359 145.914964 141.512574 144.647469 142.486404 ... 36.283743 41.538788 65.937263 119.205266 125.532572 7.344103 114.312228 133.052304 126.371151 101.668375 135.552733 128.137945 121.052663 119.196735 34.705066 80.272380 61.043666 45.001147 85.221160 90.953843 98.720607 102.494515 21.934454 19.927550 8.503376 8.613251 19.946810 43.898312 47.493077 23.789323 18.618149 73.705423 53.089187 76.598514 132.639966 103.159107 12.469611 57.758488 97.831213 20.525305
Frontal-to-Occipital (GapMap) right 113.265633 94.451678 116.177581 115.687549 138.394680 111.902342 100.288792 85.209588 115.895490 119.336990 66.343201 106.887981 96.717232 101.478153 114.491047 103.862070 107.124599 53.312718 106.999209 107.762136 85.329408 130.199063 87.841199 28.815451 16.779563 78.471138 12.852664 74.128842 47.992021 98.807792 64.741618 45.448040 95.324980 88.401110 79.778410 80.705518 118.526755 115.886750 108.478286 88.728469 ... 43.849946 32.045053 20.489395 23.040465 25.407866 30.713926 104.366169 101.410808 105.430995 107.367113 64.017206 68.960491 65.897315 67.378956 34.337562 67.543051 77.796433 91.901288 74.275043 71.356737 79.179407 70.167465 50.891800 64.598167 39.508571 82.639136 65.416921 54.518555 91.775380 80.616338 108.438496 92.673303 109.404822 90.855829 40.968707 54.434014 57.758488 13.387146 107.192846 23.677089
Frontal-to-Temporal-I (GapMap) right 80.185138 50.734833 59.525457 45.999289 68.374310 1.323446 4.631489 4.026650 1.332584 3.091001 0.636671 1.193912 2.505177 0.000000 3.795215 1.730882 11.394524 68.790532 56.220000 89.367908 1.964321 45.990336 0.000000 0.000000 0.000000 0.000000 0.000000 0.585500 0.000000 0.000000 0.000000 0.000000 5.516093 17.950211 1.076863 1.946881 3.284836 1.331392 14.942431 22.580277 ... 34.537502 44.184719 59.082599 52.218170 90.581596 0.584056 39.371623 43.467015 16.143016 12.487032 95.959566 79.168083 69.088943 83.050112 14.788159 60.969832 55.429578 52.574421 42.131501 70.180930 74.414928 43.866334 34.518865 34.968941 12.893551 4.577576 13.541532 17.754161 45.376787 42.863435 53.931351 25.257516 12.570454 57.239898 39.376059 99.283334 97.831213 107.192846 7.253007 43.793481
Frontal-to-Temporal-II (GapMap) right 110.639884 123.819241 63.936724 53.404001 71.629294 74.890102 103.766506 97.831283 64.947170 101.974410 8.485952 54.077958 44.082153 33.820223 72.406029 64.770205 95.329845 78.236132 63.944428 103.555187 15.188902 126.164398 11.898262 5.595951 1.262686 43.671416 3.230479 33.144117 12.871807 45.325023 19.323303 13.151807 47.832195 108.042240 18.918683 14.112290 96.725644 79.402037 113.623223 108.132246 ... 77.163234 73.358795 71.838440 84.332417 93.034153 6.545921 56.000758 65.903681 64.079234 48.629447 101.661291 93.332964 97.877576 103.746235 12.640151 49.576662 20.587723 17.213345 22.736131 70.106942 81.460334 53.925081 19.920375 22.436673 9.001643 35.474827 21.116633 17.980365 10.948433 9.751459 16.333590 17.929941 12.932872 16.362522 85.201375 84.955945 20.525305 23.677089 43.793481 8.443016

294 rows × 294 columns



Meanwhile, receptor density profiles employ receptor names as indices.

cf = siibra.features.get(siibra.get_region('julich', 'hoc1'), 'receptor density profile')[0]
for i, f in enumerate(cf):
    print(f"Element index: {cf.indices[i]}, receptor: {f.receptor}")
Element index: 5-HT1A, receptor: 5-HT1A
Element index: 5-HT2, receptor: 5-HT2
Element index: alpha1, receptor: alpha1
Element index: alpha2, receptor: alpha2
Element index: alpha4beta2, receptor: alpha4beta2
Element index: AMPA, receptor: AMPA
Element index: BZ, receptor: BZ
Element index: D1, receptor: D1
Element index: GABAA, receptor: GABAA
Element index: GABAB, receptor: GABAB
Element index: kainate, receptor: kainate
Element index: M1, receptor: M1
Element index: M2, receptor: M2
Element index: M3, receptor: M3
Element index: mGluR2_3, receptor: mGluR2_3
Element index: NMDA, receptor: NMDA

So to get the receptor profile on HOC1 for GABAB we can do

cf.get_element("GABAB").data
Receptor density (fmol/mg)
0.00 1950
0.01 2101
0.02 2204
0.03 2293
0.04 2375
... ...
0.96 1466
0.97 1429
0.98 1390
0.99 1350
1.00 1319

101 rows × 1 columns



Similarly, to plot

cf.get_element("GABAB").plot()
Receptor Density Profile: GABAB
<Axes: title={'center': 'Receptor Density Profile: GABAB'}, xlabel='Cortical depth', ylabel='fmol/mg'>

Total running time of the script: (0 minutes 38.538 seconds)

Estimated memory usage: 776 MB

Gallery generated by Sphinx-Gallery